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The cluster density function of independent percolation t~ in a d-dimensional 
lattice is considered. For each n, it is shown that ~c(p) has finite nth left- 
derivative at critical probability Pc if d is sufficiently large. This result agrees 
with the Bethe lattice approximation, where the n th one-sided derivative of K(p) 
is bounded at Pc for all n. 
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1. I N T R O D U C T I O N  

We consider percolat ion in a d-dimensional lattice Z d. Let B be the set of 
all bonds  where each bond  connects two nearest-neighbor lattice sites in 
Z a. Suppose these bonds are open or  closed independently, and for each 
b ~ B, the probabil i ty that  b is open is equal to p and the probabil i ty that 
b is closed is equal to l -  p. Here p is a constant.  The underlying proba-  
bility measure for this model  will be denoted by Pp and the expectation 
with respect to Pp denoted by Ep. Given a configurat ion of open or closed 
bonds, two lattice sites x, y in Z ~ are said to be connected if there exists 
a path consisting of  open bonds which connects x and y. If  x = y, then x, y 
are also said to be connected. The connectedness gives an equivalence 
relation on the set of all lattice sites on Z a, and Z d can be decomposed into 
connected components .  Each componen t  is called a cluster. A cluster is 
called an infinite cluster if it has infinitely many  lattice sites. Let ~b(p) be 
the probabil i ty that  there exists an infinite cluster. It is well known  (see, 
e.g., refs. 1 and 2) that for d~>2, there exists 0 < p c <  1 such that ~b(p)=0 
for all p < Pc and ~b(p) = 1 for all p > Pc. 
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There are some other quantities related to this model which possess 
discontinuities when p varies. In this paper, we consider ~:(p)= Ep(]Co]- ~), 
where Co is the cluster containing the origin of Z d and ICoq is the 
cardinality of Co. The function ~(p) is also known as the number of open 
clusters per vertex (see, e.g., refs. 1 and 2). Here, we shall call ~c(p) the 
cluster density of percolation. The cluster density is known to be 
continuously differentiable on [0, 1], analytic on [0, Pc), and infinitely 
differentiable on (Pc, 1]. Kesten ~5) proved that, for d = 2 ,  ~(p) is twice 
differentiable at p~. There are no other rigorous results concerning the 
differentiability of ~(p). In the case of percolation on Bethe lattices (binary 
tree), however, the cluster density ~B(P) can be computed explicitly, 

~cB(p)=l+2e  ~ ~2(  2n ) 1 1 
1 - 2 e  = n 1 4 -~ ( -4~ : )n  (1.1) 

with e = - p  + �89 It is easy to see from (1.1) that ~B(P) is twice differen- 
tiable on [0, 1], ~B(P) is analytic in (0, �89 (�89 1), and ~c~3)(p) has a jump 
discontinuity at Pc = �89 Moreover, for n >f 3, ~B")(p) is bounded, as p ~ Pc. 
Boundedness of ~B")(p) as P ~ P c  also holds for a Bethe lattice with 
arbitrary degrees. For the convenience of the reader, we include a proof of 
this fact and an explicit formula for ~ in the Appendix. 

In the physics literature, percolation on Bethe lattices is considered as 
an infinite-dimensional approximation o f  percolations on Z d. Thus, it is 
natural to think that the same situation happens in percolations on Z d if 
d is above a certain critical dimension d~. In other words, x(~)(p) is 
bounded as p ~ p~. It is actually conjectured in refs. 2 and 3 that 

x ( n ) ( p ) ~ [ p _ p c l - 1  ~3 as P ~ P c  (1.2) 

- 1 < c~ 3 < 0 for 2 ~< d~< 5 and a3 = - 1  for all d>~ 6. In this paper, we obtain 
the following result. 

T h e o r e m  1.1. Let •(p) be the cluster density for percolation of Z d. 
For any n, there exists dn such that ~:(p) is continuously n times differen- 
tiable on [0, Pc] if d>~ d,. Here the derivatives at Pc mean left-derivatives. 
In particular, for any n, [~(n)(p)[ is uniformly bounded on [0, Pc] if d is 
sufficiently large. 

Theorem 1.1 implies that if - 1  ~<~3 <0,  then ~3 = - 1  at sufficiently 
high dimensions. This result agrees with the conjecture made in refs. 2 
and 3. 

Our estimate of d n is d ,=max{do ,  4 n - 3 } ,  where do is the critical 
dimension such that the infrared bound (3.13) holds for d>~ d o. It follows 
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from ref. 4 that (3.13) holds for d>~do with d0=48.  It is believed in the 
physics literatures that do= 7. Our method works also for a spread-out 
model (see, e.g., ref. 4) and Theorem 1.1 holds for a spread model. In this 
case, d o can be chosen to be 7. It is generally believed in the physics 
literature that the spread-out model and the nearest-neighbor model be long 
to the same universality class and they have the same critical dimension. 

Our estimate d, = max{do, 4 n - 3 }  is not sharp. The only criterion is 
that d~ ~> do and that the Feynman diagrams appearing in K (n) converge. 
For example, when n = 3 ,  d3 can be chosen as max(do, 7). We have 
not found the best possible way to estimate all the Feynman diagrams 
appearing in our calculations. 

Our proof of Theorem 1.1 depends on a new formula of Russo's type 
(Theorem 2.1). We also develop a systematic way to handle various types 
of pivotal bounds (Proposition 2.4) which appear in this formula. 

2. R U S S O ' S  F O R M U L A  A N D  ITS V A R I A T I O N S  

We shall use Russo's formula (7) to prove Theorem 1.1. Here we present 
Russo's formula in a slightly different way (Theorem2.1) so that (1) 
it includes also the case that the event is not necessarily increasing or 
decreasing, and (2) it allows one to take higher derivatives. Let A be a 
finite set and {w(b), b ~ A }  a family of independent Bernoulli random 
variables with P(w(b) = 1) = Pb and P(w(b) = O) = 1 - Pb. Given any a ~ A 
and a configuration w = {w(b); b ~ A}, configurations w +, w a are defined 
to be w + ( b ) = w j ( b ) = w ( b )  for all b o a ,  w + ( a ) =  1 and wS-(a)=0. Given 
b ~ A and an event A, the event that b is positiyely pivotal for A is defined 
by Ab= {w; w~ ~A and w b CA}. Similarly, the event that b is negatively 
pivotal for A is defined by Ab={w;  w~-r  and w ~ A } .  Note that 
A b ~ A b = ~ .  The event that b is pivotal for A is defined as A(b) = At, t.3 A b. 

It follows from the above definitions that 

t,,~(w) = IA (w;  ) I ,~(w; ) (2.1) 

IAb(W) = IA(W; ) IAc(W? ) 

If W ~-Ab, then w~, w b ~ A b. This also holds for A b and A(b). Therefore 

A b, A b, A(b) are measurable with respect to a{w(a); a ~ A, a r b} (2.2) 

A partial ordering on the set of configurations is defined by w ~< w' if 
w(b) <~ w'(b) for all b ~ A. An event A is said to be increasing if In(w ) <~ 
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I~(w') whenever w ~< w'. An event A is decreasing if A ~ is increasing. From 
these definitions it follows that 

IA(b)(W ) = IA(W: ) IAc(W b ) = IAb(W ) if A is increasing (2.3) 

Finally, we note that if A is increasing, then 

A(b) = ~ c~ fl (2.4) 

where ~ is increasing and fl is decreasing. Indeed, let ~, fi be events 
such that I~(w~)=I~(w)  and IAc(w~)=I~(w). Then ~ is increasing, fi is 
decreasing, and (2.4) follows from (2.3). Using the above notations, we can 
put Russo's formula in the following form. 

T h e o r e m  2.1. For any event A, and b cA,  

dP(A ) 
= P(Ab) - P(A b) (2.5) 

C o r o l l a r y  2.2. If A is increasing, then dP(A)/dpb = P(A(b)). If A is 
decreasing, then dP(A)/dpb = -P(A(b)) .  For any event A, ]dP(A)/dpb [ <~ 
P(A(b)). 

R e m a r k  2.3. Theorem 2.1 allows one to take higher derivatives of 
P(A). For example, 

d (dP(A)'] 
dPb2 \ ~ P b ~ / =  P(Ab~,b2) - P((Abx)b0-- P((Abl)b2) + P(A b''b2) (2.6) 

for any event A, b~, b2 e A. In particular, if A is increasing, then 

d (dP(A)~ = P(Ab~ b2)- P((Ab,) b2) (2.7) 
dpb2 \ dpb, ] 

Corollary 2.2 is a immediately consequence of Theorem 2.1 and (2.3). To 
prove Theorem 2.1, we write 

Then 

P(A) = ~  IA(W ) 1--[ pW(a)( 1 - -Pa) '  w(a) 
w a c A  

dP(A) 
dpb -- ~ I~(w)[Iw(b)= I(W) - -  Iw(b)=o(W)] 

w 

(2.8) 

• ~ paW(a)(1 __ pa)l-  w(a) (2.9) 
a ~ A , a T ~ b  
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Let ~ denote a configuration on A\b and ~ w r/ a configuration on A such 
that (~wq)(a)=~(a)  for all a ~ A \ b  and (~wq)(b)=~/.  Then (2.9) can be 
written as 

dP(A) 
- ~ ,  [ I A ( ~  1)--IA(~ U 0)l  

dPb 

X I~  ~(a) ~(a) Pa (1 - P ~ )  ~ 
a~A,a~b 

(2.10) 

By (2.2), lab and IAo are functions of ~ and 

IA(~u 1 ) - - IA([uO)=IA([W 1) /AC([ W 0)--IAc(~ ~ 1) IA([ U0) 

=/A~(~) -- IA~(~') 

This and (2.10) imply Theorem 2.1. 
We shall also use the following variation of Russo's formula, which 

first appeared in ref. 6: If A is increasing and B is decreasing, then 

dP( A c~ B) 
P(A(b) (~ (B(b)) C (~ B) - P(B(b) ~ (A(b)) C ~ A) 

clpb 

(2.11) can be easily proved by using Theorem 2.1 and (2.1). 
Formulas (2.1) and (2.11) can be applied to percolation in Z d by 

associating with each bond a random variable w(b), where w(b) = 1 if b is 
open and w(b) = 0 if b is closed. However, after several derivatives, the rela- 
tions between pivotal bonds of connectedness of certain lattice sites become 
complicated. In order to handle them in an efficient way, we extend the 
definition of pivotal bonds as follows. First we consider a graph consisting 
of nodes and edges where each edge joins two different nodes. Nodes are 
represented by circles and they are labeled by subsets of Z a, F~ ..... F 1. 
Edges are labeled by bonds in Z a, bl, b2 ..... bs. [Here we are using nodes 
and edges as in the terminology of general graph theory (see, e.g., ref. 1). 
Suppose in our graph an edge b joins nodes F~ and F~; it does not imply 
that b connects set F~ and F~ in the Z d lattice.] 

Given a configuration w of open and closed bonds in Z ~ and x ~ Z a, 
let C(x) = C(x, w) be the cluster that contains x. For a subset F of Z a, we 
let C(F) = C(F, w) = U ~ r  C(x, w). Two subsets F 1 and 1"2 of Z a are said 
to be connected if there are x e F~ and y e / '2  such that x and y are con- 
nected by a path of open bonds of w. A set F is said to be connected if F 
is contained in a cluster. Given a graph G with nodes F~,/"2 ..... FI and 
edges bl, b2,...,b,, the event that bl, b2 ..... bs are pivotal bonds for the con- 
nection of F~ ..... Ft with respect to G, denoted by B(G), is defined by the 
set of all configurations w such that: 
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(i) ' C(F1,  w - ) ,  C(F2, w - )  ..... C(/"I, w-)  are disjoint, where w-  is the 
configuration obtained from w by setting w(bg)= 0 for all i. 

(ii) Upon setting w(b~)= 1 for all i, every b~ can be used to connect 
C(F~, w-)  and C(/"~, w-),  where F~ and/"p  are the nodes that meet the 
edge b~ in the graph G. 

Another useful event is defined by 

I(G) = {w; C(Fi, w-  ) is contained in one cluster of w , 

for every i =  1, 2,..., 1} 

Note that if G is given by 

then B(G) is the event that b is pivotal for the connection of x and y as 
defined before. 

The following special case will be useful in this paper. Let G be a 
graph consisting of nodes labeled by F 1, Fz,...,F t and edges bl, b2 ..... bs. 
Here bi=(xi, Yi), i= 1,2,...,s, and all the b i are different. Suppose 
/"1, /"2,--.,/"! is a partition of {xi, yi, i = 1, 2,... } such that/"i  # ~3 and xe, yi 
do not belong to the same/"~, for any c~. Suppose also that be joins F ,  and 
/"~ if x~ e F~ and Yi ~/"~ (see Fig. 1 ). 

P r o p o s i t i o n  2.4. Let G be a graph satisfing the above conditions. 
Put I =  I(G) and B = B(G). Then 

d 
P(Ic~ B) = Y, ~ P(I(G') c~ B(G')) 

b ~ b i f o r a n y  i G' 

- ~ ~ P(I(G") ~ B(G")) 
b :/: bi for  a n y  i G"  

(2.12) 

F i g .  1 
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Here G' runs over all possible graphs of the following type. G'  has nodes 
labeled F1,F2 ..... F~_I, F[, F[', F~+ 1 ..... F t and edges b I ..... b~, b=(x , y )  
such that x e F / ,  y e F " ,  F ' \ {x}va~3 ,  F / ' \ { y } r  and F / w F / ' \  
(x, y) = F~. The summation G" is taken over all G" of the following type. 
G" has nodes labeled by F1, F2,..., ~P~, F~ + ~ ..... ~P~, F~ + ~ ..... F l and bonds 
b = (x, y), bl, b2,...,b~ such that 

Proof. 
we get 

The event I is increasing and B is decreasing. Applying (2.12), 

d 
P(Ic~ B ) = ~  P(I(b) c~ (B (b ) f  n B) 

b 

- ~ P(B(b) c~ (I(b)) C n I) (2.13) 
b 

Note that I ( b ) n  (B(b))C~B= UG, {I(G')wB(G')} for bCbi for any i, and 
if b=bi for some i. For  the second sum in (2.13), note that 

B(b)n(I(b))CnI=U~,,  {I(G")~B(G")} for bCb~ for any i, and ~Z~ if 
b = bz for some i. Then proposition follows from (2.11) and the observation 
theft both unions over G' and G" are unions of disjoint events. 

3. P R O O F  OF T H E O R E M  1.1 

Let B(n)=  [ - n , n ] a n Z  a, d>~2. Any two lattice sites x, yeB(n)  are 
said to be connected in B(n) if either x =  y or there exists a path 
consisting of open bonds such that 7 connects x and y and 7 - [ - n ,  n ] d. 
Connectedness in B(n) defines an equivalence relation in B(n) and it 
decomposes B(n) into connected components. Each connected component 
is called a cluster in B(n). Let M,  be the number of clusters in B(n). It 
follows from Grimmett (3) and Wierman (8) that 

! 
limoo @ Mn = x(p)  a.s. Pp 

for all 0 ~<p ~< 1. Let Kn = E(Mn). Then, by the Dominated Convergence 
theorem, 

1 
lim ~ Kn(p) = K(p) (3.1) 

n ~  

By the Ascoli Arzella theorem and a standard argument using uniform 
convergence, to prove Theorem 1.1, it is sufficient to prove that for each N, 
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there exists a constant do(N) such that for all d>~do(N), there exists a 
constant CN(N ) such that 

(1; 
hK(,N)(p)[ <~ CN (3.2) 

IB(n)l 

for all n, all 0 < p ~< Pc. 
We start to be taking the first derivative of Kn, 

K~=EM~= ~ P(M~>l) 
l = 1  

The event {M, ~> l} is decreasing, by Russo's formula, 

X'(p) = - E E 
l =  l b: b o n d  in  B ( n )  

= - Y' ~ P { M . = I - 1  i fwb= l a n d  
b: bond in B ( N )  l = 2 

Mn=li fWb=O} 

= - ~ P{b is pivotal for the connection 
b: bond in B ( n )  

of x and y, where x, y are the end sites of b } 

1 
= --~ E P{B(GI)} 

x ,  x" 

(3.3) 

where G1 is the graph given by 

with F =  {x} and F ' =  {x'}, and b = (x, x') is a bond. 
Note that B(G1) is a decreasing event. Applying (2.10), we get 

1 
= - ~ P(I2 ~ B;) 

K,~' 2 x2,xi,x~,x~,) 

where B 2 = B(G2), 12 =/(G2), and G2 is given by 

(3.4) 
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Here /"2 = {x~, x2}, /"; = {xl, xl}, b~ = (x~, x'~), and b2 = (x2, xl) 
such that b~ 4 = b 2. 

To differentiate K", we note that/2 is an increasing event and B 2 is a 
decreasing event. By (2.10), 

1 
Kn (3)= E P(I3,1mB3,~)-~ ~ P(I3,2~B3,z) 

X 1 ,X i ,X2,XI,X3,X3 e B(n} ?c I , x  i , x2 ,x2 ,x3 ,x  ~ �9 B(n) 

(3.5) 

where B3,i = B(G3, i) , 13, i= [(G3,i)  , and G3,~ is given by 

b l 

~ b2 ~ G3,2 

63,1 

Here F l={x l ,x3} ,  F2={x; ,x2} ,  F3={x'~,x~}, b~=(x .x ; )  for 
i=  1, 2, 3, and the b~ are all different; in G3,2, /"4---{x1, x2, x3}, /"4-- 
{xl, xl, x;}. 

The events I3,i are again increasing and the B3,i decreasing. We may 
apply (2.10) again to obtain the fourth derivative of K,: 

Kn -- 

-- 3 E P(I4,2 0 B4,2) 
xl ,x2,x3,x4,Xl ,X2,X3,X4 

- - 3  E P ( I 4 , 3  ~ B 4 ,  3)  
Xl ,X2,x3 ,x4 ,x l ,x2 ,x3 ,x4  

1 
-1-2 E ,  , , , P ( /4 , a~B4 ,4 )  

xi ,x2,x3,x4,Xl ,X2,X3,X4 

where B4,i = B(G4,i), /4,i = I(G4,i), and the G4,i are given by 

(3.6) 

64,1 " 
b i ~  b4 
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r5 = {xl ,  x3}, r~ = {x; ,  x2, x4}, r7 = {x'l, x~, x~}; 

G4,2 : b4 

r8  = {Xl, x2, x4}, r,{x'~, x3}, r , o  = {X'l, x~, x;}; 

G4, 3 �9 b3 

/'1 = {Xl, X2}, /~2 = (X2, X3} , /~3 = {X3, X4}, /~4 = {Xl, X4}; 

bl 

G4'4: ~ 

b4 

r l~ = {x~, x2, x~, x4},/~1~ = {xl, x; ,  x; ,  x~}, b, = (x,, x;). 

In principle, K (N) c a n  be computed by using (2.10) repeatedly. There 
(N) is a pattern to write down what kind of graphs are in K,  . Rather than 

writing down the explicit formula for K~ N), we shall start to estimate K~ u), 
for N =  1, 2 ..... Using P(B(G1))<~ 1 and (3.3), we have 

1 
- -  [ K ' ( p ) I  <~ d (3.7) 
IB(n)l 

for all 0<~p~< 1. 
To estimate K,~', we note that [2 ~ B2 ~-Q2, where Q2 is the event that 

there exist two disjoint paths of open bonds such that one path connects 
xl and x2 and the other path connects x'l and x~. By the v.d. Berg-Kesten 
inequality, 

P(Q2) <<. P{x~ is connected to x2 } P{x'~ is connected to x~} 

< 1  P{Xl is connected to x2} 2 (3.8) p2 
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Hence 

[B(n)------[[ tK'I 2 \ p  J IB(n)[ 
x l ,  x2 E B ( n )  

'(7; x ~  

2 x d 

2 0 

P{xl is connected to x2 }2 

(3.9) 

P{0 is connected to x} 2 

x 

The diagrams are defined as follows. Let g(x, y) denote the probabity that 
x is connected to y. A Feynman diagram is a graph consisting of vertices 
and edges. If the vertices of a Feynman diagram F are labeled by 
xl ,  x2 .... ~ Z d, then it represents a function 

[I g(Xe, Ye) (3.10) 
e e F  

where e is taken over all edges in F, and x e and Ye are the vertices that 
meet e. For  example, 

x ~  w 
Z 

=g2(x, y) g(y, w) g(x, z) g(z, w) 

An unlabeled Feynman diagram represents a summation over all labeled 
Feynman diagrams with labels in Z a. For example, 

x i ,  x2, x3 

x3 

X2 

= ~ gZ(x, xl)g(x, x2) g(xa,x3)g(xz, x3) 
Xl,X2,x3 

To estimate K;,", we first note that I3,t c~ B3,1 c Q3,1, where Q3,1 is the event 
that there exist three disjoint paths of open bonds such that one connects 
Xl to x2, another connects x~ to x3, and the third connects x] to x~, Also, 
I3,2 c~ B3, 2 __ Q3.2, where Q3,2 is the event that there exist x4, Y4 ~ B(n) and 
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X4, Y4 ~ B(n) and six paths such that the first path connects Xl and x4, the 
second path connects x4 and x2, the third path connects x 4 and x3, the 
fourth path connects x] and Y4, the fifth path connects Y4 and x;, and the 
last path connects Y4 and x;. By the v.d. Berg-Kesten inequality, then, 

+1 (2_d'~ 3 

Applying the same argument, we get 

+~  +~  (3.12) 

To estimate each Feynman diagram, we need the following result obtained 
by Hara and Slade(4): There exist constants do and Co such that the Fourier 
transform of g(0, .), 

CO 
I~(k)l ~< 'k '----~il (3.13) 

for all k=(kl,...,k~), Ik~L ~<~, 0 < p < p c  and d>~do. 
By (3.9) and (3.13), there exists a constant c such that 

[B(n)----~[ IK/[I 2 \ p , ]  I1~11~< c 

0 < p  < Pc, if d~>max(do, 5). By the monotone convergence theorem, the 
same estimate holds for 0 < p ~< Pc and d>~ max(do, 5). 

In the third derivative (3.11), the first Feynman diagram is bounded 
by Hg[l~. The second diagram in (3.11) can be estimated by using H61der's 
inequalities and translational invariance of g: 

(0<>t(maxi>) (3.14) 
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The right side of the above is bounded by II~lF411~ll 2. Hence 

I (x~3}[ ~ c (3.15) 
]B(n)l 

for all O<p<<,pc if d~> max(do, 9). 
The first diagram in (3.12) is bounded by ll~!144. The second diagram 

in (3.12) is estimated in the same way as (3.14). It is bounded by II~]l ~ I}~1] 2 2. 
The third diagram is estimated using H61der's inequalities successively: 

~ 0 ~ m a x  ( ~ > )  max ( i > )  

~L2 ~ 2 ( 3 . 1 6 )  II ~11 ~ IL gl 2 II gll 2 

The fourth diagram can be estimated in the same way. It is bounded by 

Therefore 

1 ]K{4} I ~< c (3.17) 
IB(n)[ 

for all O<p~pc if d>~max(do, 13). 
This method can be applied to estimate IK~N) t for general N. The 

evolution of Feynman diagrams in K~ N) as N increases can be described as 
follows: when N =  2, there is a diagram 

F2" O ~  

When N =  3, two diagams are obtained, where one is obtained by 
adding a vertex along an edge of F2 to get 

F3, l - 0 - ~ -  

822/66/3 4-29 
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in (3) K n �9 

a level 1 graph of F3,2 and 

This pattern of Feynman diagrams continues to produce all possible 
Feynman diagrams in K.(N). In F3,2, let us call 

<> 

, / /  

a level 2 graph of F3,2. The order of levels is determined by the construc- 
tion of F3 2. In k "(u) all Feynman diagrams are unions of at most N -  1 

, = ~ n  , 

levels, where each level is of the form 

for level K, K ~> 2, 

except the first level, which must be like 

level 1 

1136 

The other is obtained by adding a graph 

on F 2 such that two endpoints of F are attached to two different edges of 
F2. This gives 

F3,2: 0 @  
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Note that in a diagram of K (N) the number of vertices in level k, k/> 2, 
is at most 2 N -  1. The number of vertices in level 1 is at most 2 N -  2. Now 
we use H61der's inequalities successively to estimate a Feynman diagram, 
as illustrated in (3.16). Each time the highest level is reduced. Then the 
Feynman diagram is bounded by 

IFgrl~i (3 .18)  

where rn<~N- 1, ~ < ~ 2 N - 2  for all i =  1, 2 ..... m. It follows from (3.13) that 
(3.18) is bounded by a constant if 0 < p ~< Pc and d>~ max(do, 4 N - 3 ) .  The 
number of Feynman diagrams in K~ N) is a combinatorial constant. There- 
fore, there exists a constant cN(d) such that 

1 IK~N) I ~< CN(d ) (3.19) 

for all 0 < p ~ p~ for all n and all d~> max(do, 4 N - 3 ) .  End of the proof of 
Theorem 1.1. 

A P P E N D I X  

For the convenience of the reader, we include here an exact solution 
for ~B(P) in the Bethe lattice with degree d +  1. Let {xl, x2,..., xn} be a set 
of sites containing the root. Observe that {Xl, Xz,...,xn} is the cluster 
containing the root if and only if there are n -  1 open bonds connecting 
xl ,  x2 ..... xn and dn + 1 closed bonds attached to x~, x2 ..... x , .  Let An be the 
number of clusters of size n containing the root. Let C be the cluster 
containing the root. Then 

P([C[ = n) = A,(1 - p)an+~pn-~ (a. 1) 

There, 

: ~ l_An(l__p)dn+lp, 1 
n _ l  H 

1 1A,,[p(1 __p)d]n (A.2) 
~ p 

P n=l n 

For 0 < p < 1 and p # Pc = 1/(d+ 1), we may take the derivative in (A.2) to 
get 

[ (1-p) /p] '  1 - ( d + l ) p  
~ ( p ) -  ,~B(p) + P(ICI < ~ )  (A,3) 

l-(1 - p)/p] (1 - p )  p 



1138 Yang and Zhang 

The general formula  for x~n) can be obta ined recursively by using (A.3). I t  
follows f rom (A.3) that  P(LC[ < o o ) =  1 when p < Pc and induct ion that  
limp~pc tc~ ) is bounded.  Moreover ,  by solving the differential equat ion 
(4.3), we get 

~ ( p )  = - d -  (d+  1) 
(1 - p )  ln( l  - p )  

P 
(A.4) 

for 0 < p ~ <  l / ( d +  1). 
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